

COSPAR 2018

Measuring CO₂ and CH₄ from Space

Validate measurements to ensure X_{CO2} and X_{CH4} accuracy of ~0.25%

Collecting Space-based X_{CO2} Measurements

These Systems are Now Being Used to Study the Carbon Cycle

Fast Forward to 2015: COP21

To support the Paris Agreement:

- The overall goal is to develop a sound, scientific, measurement-based approach that:
 - reduces uncertainty of national emission inventory reporting,
 - identifies large and additional emission reduction opportunities
 - provides nations with timely and quantified guidance on progress towards their emission reduction strategies and pledges (Nationally Determined Contributions, NDCs)
- In support of these efforts, atmospheric measurements of greenhouse gases from satellites could
 - Improve the frequency and accuracy of inventory updates for nations not well equipped for producing reliable inventories, and
 - help to "close the budget" by measurement over ocean and over areas with poor data coverage
- We now have strong support, but new marching orders

Anthropogenic Emissions

Compact Source Uncertainties Drive Measurement Precision

- For emission sources that are smaller than the footprint size, the minimum detectable mass or mass change depends on instrument precision (ΔX_{CO2} or ΔX_{CH4}) and footprint area, A.
- The minimum detectable flux change depends on precision, the effective wind speed at the emission level and the footprint's cross section in the direction of the prevailing winds.

$$F_{min} = 2 \cdot u \cdot \Delta M_{CO2}(\Delta XCO2_{min}) / L$$

 Detection limits increase with random error, footprint size, and wind speed

Flux (MTCO₂ /year) vs Footprint area and single sounding precision for a 5 km/hour wind

		DXCO2(ppm)				
Area (k		0.25	0.5	1	. 2	4
·	1	0.341	0.683	1.37	2.7	5.47
	2	0.483	0.966	1.93	3.86	7.73
	4	0.685	1.37	2.7	5.47	10.9
	10	1.08	2.16	4.33	8.66	17.3
	50	2.41	4.83	9.66	19.3	38.6
	85	3.14	6.29	12.6	25.1	50.4
2	1800	14.4	28.9	57.8	115	231

Emissions from Compact Sources: plume models

- The OCO-2 (0.5 ppm single sounding random errors) can clearly detect plumes that fall along its ground track
- Plume imaging methods can exploit information from multiple footprints to reduce uncertainties if
 - biases are not spatially correlated
 - footprints within the plume can be discriminated from the background
 - Proxies (NO₂, CO) help for CO₂ plumes
- Averaging typically reduces X_{CO2} anomaly uncertainties (and thus flux uncertainties) by less than a factor of 2
- Wind speed and X_{CO2} uncertainties contribute similar flux uncertainties

Resolution and Coverage: Sampling Strategy

City

- The resolution and coverage of space based greenhouse gas observations is limited by the spatial sampling strategy adopted
 - The large (30 km x 60 km) footprints used by SCIAMACHY provided good coverage of the Earth, but many footprints were contaminated by clouds
 - Systems that collect spatially-isolated sample (GOSAT, Feng Yun 3D, Gaofen-5) cannot resolve localized emissions (plumes) as well as their background
 - Continuous "stripes" (OCO-2, TanSat, and MicroCarb) provide high spatial resolution along a narrow track but large gaps between sample tracks

- Systems that cannot observe the glint spot over the full range of latitudes cannot collect observations over the oceans, which cover 70% of the surface of the Earth
- Passive solar systems can only collect observations while the sun is up

Resolution and Coverage: Clouds!

- Early in the evolution of the OCO and GOSAT missions, optically thick clouds were identified as significant limitation on coverage
- Based on MODIS cloud studies, a small footprint was adopted for OCO (and OCO-2) to mitigate this issue
- Actual yields are worse than expected

The majority of the clear soundings collected by OCO-2 are collected over the ocean by observing the ocean "glint spot"

Mitigating the Impact of Biases

- Fortunately, only spatially and temporally coherent biases operating on the scale of interest can introduce flux errors as large as the one illustrated on the previous slide
 - Biases that are spatially and temporally invariant do not introduce large flux errors, because fluxes are proportional to the product of the anomaly amplitude and the wind, $F \propto u \times \Delta X_{CO2}$
 - Small scale biases often average out
- Some processes can introduce spatially coherent biases
 - surface pressure, air mass dependence, optically-thin clouds and/or aerosols, surface albedo, ...)
- Many of these processes can be identified and mitigated through a well designed calibration/validation program

Missions: The Pioneers

- SCIAMACHY (2002-2012) First sensor to measure O₂, CO₂, and CH₄ using reflected NIR/SWIR sunlight
 - Regional-scale maps of X_{CO2} and X_{CH4} over continents
- GOSAT (2009 ...) First Japanese GHG satellite
 - FTS optimized for high spectral resolution over broad spectral range, yielding CO₂, CH₄, and chlorophyll fluorescence (SIF)
- OCO-2 (2014 ...) First NASA satellite to measure O₂ and CO₂ with high sensitivity
 - High resolution imaging grating spectrometer small (< 3 km²) footprint and rapid sampling (10⁶ samples/day)
- TanSat (2016 ...) First Chinese GHG satellite
 - Imaging grating spectrometer for O₂ and CO₂ bands and cloud & aerosol Imager

The Next Generation

- Feng Yun 3D (2017) Chinese GHG satellite on an operational meteorological bus
 - GAS FTS for O₂, CO₂, CH₄, CO, N₂O, H₂O
- Sentinel 5p (2017) Copernicus pre-operational Satellite
 - TROPOMI measures O₂, CH₄ (1%), CO (10%), NO₂, SIF
 - Imaging at 7 km x 7 km resolution, daily global coverage
- Gaofen 5 (2018) 3rd Chinese GHG Satellite
 - Spatial heterodyne spectrometer for O₂, CO₂, and CH₄
- GOSAT-2 (2018) Japanese 2nd generation satellite
 - CO as well as CO₂, CH₄, with improved precision (0.125%), and active pointing to increase number of cloud free observation
- OCO-3 (2019) NASA OCO-2 spare instrument, on ISS
 - First CO₂ sensor to fly in a low inclination, precessing orbit

Future GHG Satellites

- CNES/UK MicroCarb (2021+) compact, high sensitivity
 - Imaging grating spectrometer for O_2 A, O_2 $^1\!\Delta_g$, and CO_2
 - ~1/2 of the size, mass of OCO-2, with 4.5 km x 9 km footprints
- CNES/DLR MERLIN (2022+) First CH₄ LIDAR (IPDA)
 - Precise (1-2%) X_{CH4} retrievals for studies of wetland emissions, inter-hemispheric gradients and continental scale annual CH₄ budgets
- NASA GeoCarb (2022*) First GEO GHG satellite
 - Imaging spectrometer for X_{CO2}, X_{CH4}, X_{CO} and SIF
 - Stationed above 85° W for North/South America
- Sentinel 5A,5B,5C (2022) Copernicus operational services for air quality and CH₄
 - Daily global maps of XCO and XCH4 at < 8 km x 8 km

[&]quot;Pre-Decisional Information -- For Planning and Discussion Purposes Only

Improving Resolution and Coverage: Combining Data from the Emerging Fleet

 We could improve resolution and coverage of these satellites by integrating them into a virtual constellation and combining their results

Creating a Combined Data Product: the OCO-2/GOSAT Collaboration

Vicarious Calibration

Retrieval Algorithm

Forward Radiative
Transfer Model

Spectra + Jacobians

Instrument Model

Spectral+Polarization

Inverse Model

- Compare obs. & simulated spectra
- Update State Vector

Cross Validation

Validation of X_{CO2} Products Against International Standards: TCCON

Comparisons with the Total Carbon Column Observing Network (TCCON) stations are being used to identify and correct biases in target observations.

After applying a bias correction

- Global bias is reduced to < 1 ppm
- Station-to-station biases reduced to ~1.5 ppm

Wunch et al. (2016)

Tools Needed to Meet New Requirements

- Sensors with improved precision, spatial resolution, and coverage
 - Improved instrument calibration accuracy and stability
 - Add hoc constellation consisting of the satellites in the "program of record"
 - Dedicated LEO and Geo GHG constellations
- Improved remote sensing retrieval algorithms
 - More accurate description of gas absorption and aerosol scattering
 - Optimized to more fully exploit the information content of solar GHG spectra
- More comprehensive and accurate validation standards
 - Expand and improve ground based in situ, TCCON, AirCore/Aircraft
- Improved atmospheric inversion models for CO₂ and CH₄ fluxes
 - Higher spatial resolution
 - More accurate description of both horizontal and vertical transport
 - More complete assimilation of ground-based, aircraft, and space based data
 - Methods to validate estimated fluxes on local, national, and regional scales

A Candidate GHG Constellation Architecture

The coverage, resolution, and precision requirements could be achieved with a constellation that incorporates the following:

- Coverage and spatial resolution: To cover the globe on bi-weekly intervals, a constellation of ≥ 3 satellites in LEO with
 - Broad (> 200) km swaths with a mean footprint size < 4 km²
 - Single sounding random error < 0.5 ppm, and vanishing small regional bias (< 0.1 ppm) over > 80% of sunlit hemisphere
 - ≥ 1 satellite with proxy sensors (CO, NO₂, CO₂/CH₄ Lidar)
- Resampling Frequency: Three (or more) GEO satellites to monitor diurnally varying processes over continents
 - Europe/Africa, North/South America, and East Asia
- Infrastructure: A calibration, validation, and flux inversion modeling infrastructure to integrate space and ground based observations to yield reliable GHG fluxes

GCOS CO₂ and CH₄ Requirements.

The 2011 update for the Global Climate Observing System (GCOS) Systematic Observation Requirements for Satellite-Based Data Products for Climate (GCOS, 2011) and GCOS 2016 Implementation Plan (GCOS, 2016) included CO₂ and CH₄ measurement requirements

Variable / Parameter	Horizontal Resolution	Vertical Resolution	Temporal Resolution	Accuracy	Stability/ Decade*	Stability/ Decade**
Tropospheric CO ₂ column	5-10km	N/A	4 h	1 ppm	0.2 ppm	1.5 ppm
Tropospheric CO ₂	5-10 km	5 km	4 h	1 ppm	0.2 ppm	1.5 ppm
Tropospheric CH ₄ column	5-10 km	N/A	4 h	10 ppb	2 ppb	7 ppb
Tropospheric CH ₄	5-10 km	5 km	4 h	10 ppb	2 ppb	0.7 ppb
Stratospheric CH ₄	100-200 km	2 km	Daily	5%	0.30%	0.30%

These requirements are ideal, but were adopted as initial targets for the constellation

^{**} from GCOS 2016

^{*} from GCOS 2011

Future LEO GHG Constellations in the Planning Stages

- Copernicus CO₂ Sentinel (2025+)
 - 3 or 4 LEO satellites in an operational GHG constellation
 - Primary instruments measure O_2 (0.76 μ m A-band), CO_2 (1.61 and 2.06 μ m), and NO_2 (0.450 μ m) at a spatial resolution of 2 km x 2 km along a broad (200-300 km) swath
 - A dedicated cloud/aerosol instrument is also under consideration

TanSat-2 Constellation

- 6 satellites, with 3 flying in morning sun-synchronous orbits and 3 flying in afternoon sun-synchronous orbits
- primary GHG instrument on each satellite with measure CO_2 (1.61 and 2.06 μ m), CH_4 and CO (2.3 μ m) as well as the O_2 A-band (0.76 μ m) across a 100-km cross-track swath

TanSat Constellation

Summary

- Space-based remote sensing observations hold substantial promise for verifying inventories
 - These data complement existing ground-based and aircraft based in situ data with increased coverage and sampling density
- Over the next decade, a succession of missions with a range of CO₂ and CH₄ measurement capabilities will be deployed
 - These missions are demonstrating the precision and resolution needed to monitor inventories, but improvement in accuracy and coverage needed to for this application
 - Much greater benefits could be achieved if these sensors can be crosscalibrated and their products can be cross-validated so that they can be combined into a long, continuous GHG data record
- Well coordinated constellations of GHG satellites, combined with improved ground and aircraft-based data and flux inversion modeling tools could meet the expanding needs for independent verification of GHG inventories

